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I. THE GENERAL FRAMEWORK

System identification is concerned with the estimation of parameters characterizing an unknown
system. The estimation is usually based on observations of the system’s (possibly noisy) input(s)
and output(s). In the so-called “blind” system identification scenario, the estimation is based on
the observed output(s) only, aided by some general knowledge about statistical properties of the
input(s), rather than by actual observations thereof.

Quite commonly, the discussion is limited to discrete-time systems, assumed to be linear and
time-invariant (LTI), stable and causal. As such, their input-output relation can always1 be described
as

y[t] =
∞∑

`=0

h[`]u[t− `] ∀t ∈ Z, (1)

whereu[t] is the input,y[t] is the output andh[`] is the system’s impulse response. In the Multiple-
Inputs, Multiple-Outputs (MIMO) case, the inputs and outputs may assume a vector form, but the
basic form of the convolutive relation remains the same:

y[t] =
∞∑

`=0

H[`]u[t− `] ∀t ∈ Z, (2)

where u[t] and y[t] denote (respectively)M -dimensional andL-dimensional input and output
vectors, andH[`] denote theL×M impulse response matrices.

Although such systems are fully described by their (generally infinite) impulse response, some
prior knowledge pertaining to their structure often allows to assume that they can also be described
by a reduced (finite) set of parameters. For example, the Single-Input Single-Output (SISO) model
(1) is often also modeled by a difference equation,

a0y[t] = −
Np∑

k=1

aky[t− k] +
Nz∑

k=1

bku[t− k], (3)

where Np and Nz are (respectively) the number of poles and zeros in this model andθ
4
=

[a0 a1 a2 · · · aNp
b0 b1 · · · bNz

]T is the finite vector of unknown system’s parameters.
Likewise, the MIMO model (2) is often described using a State-Space model,

x[t + 1] = Ax[t] + Bu[t] (4)

y[t] = Cx[t] + Du[t],

1barring the usually uninteresting possibility of an additive constant.
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wherex[t] is an “internal” (unobserved)N -dimensional state-vector, andA, B, C and D are
matrices of the appropriate dimensions, which together comprise the finite set of unknown model
parametersθ.

Similarly, description of the MIMO system with a (matrix) difference equation model, or of
the SISO system with a state-space model are also possible. We shall regard the SISO case as a
particular case of the MIMO case, except where the distinction is necessary.

II. I DENTIFICATION VIA CONSTRAINED OPTIMIZATION

Assume that an observation interval of lengthT is available. Typical system identification
approaches seek to minimize (or to maximize) some criterion, which generally involves all of the

available output/input observationsY
4
= [y[1] y[2] · · · y[T ]] andU

4
= [u[1] u[2] · · · u[T ]] (which

is absent in the blind scenario), the unknown system parametersθ, and possibly some additional
“nuisance parameters”φ, often representing some underlying, unobserved signals. Optimization of
the criterion is sought with respect toθ andφ, yielding in turn the estimates of these parameters:

min
θ,φ

C(Y , U ; θ, φ) ⇒ θ̂, φ̂. (5)

Often, however, some constraints on eitherθ, φ or both are introduced into the optimization
(5). The motivation for incorporating these constraints can come from a surprisingly large variety
of perspectives on the problem. The main goal of this paper is to review the different approaches
that lead to different types of constraints, each with the associated motivations, and to outline the
resulting optimization and estimation approaches, providing some comparative study of the results.

Following are a few examples of useful constraints, with brief description of the motivation and
frameworks by which they are applied.

• Constraints aimed at avoiding a trivial minimizer of the criterion. This is usually the basic
motivation for adding constraints, where the associated optimization problem cannot yield a
useful solution without excluding trivial solutions from the feasibility set.

• Constraints aimed at incorporating prior knowledge about the system, such as the locations
of some of its poles or zeros (in a fashion similar to [4], [2]), so as to improve the resulting
estimation accuracy by effectively reducing the number of degrees of freedom.

• Constraints aimed at imposing certain “natural” structures on some of the signals involves. This
type of constraints usually involves the nuisance parametersφ, rather than the parameters of
interestθ. For example, in the Structured Total Least Squares (STLS, e.g., [8]),φ can consist
of the estimated noiseless signal matrix, whereas the constraints confine the elements of that
matrix to obey a certain structure (Hankel, Toeplitz, etc.).

• Constraints aimed at mitigating the bias induced by additive output noise (e.g., [9], [7], [16])
or by the use of an inconsistent criterion [18].

• Constraints aimed at guaranteeing the stability of the resulting estimated system [5], [9].

Most of these constraints would take the form of “equality constraints”, namelyf(θ,φ) = 0
(wheref(·) is an associated vector function), but some may also involve forms of inequalities.
The basic approaches for optimizing the criteria under the associated types of constraints (La-
grange multipliers, Method of multipliers, Successive projections, Linear programming) will also
be reviewed and graphically illustrated, where applicable.
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